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ABSTRACT

One of the difficulties in the past relating to product accuracy has been

the| absence of agreement on the definitions of accuracy and the appropriate
application of these definitions. There has been an increasing need for DMA

to

better explain accuracy to product consumers, other government agencies and

contractors supporting DMA. Recent discussions within DMA has led to a
consensus of opinion on the proper definitions. This paper states the
definitions and expands them to a meaningful mathematical formulation.

the

con

This report defines accuracy and suggests mathematical tools to propagate
effects of errors to a generic product via standard covariance error

propagation and,or sample statistics arising from comparisons to diagnostic

trol. .




I, Introduction

The purpose of this report is to standardize both the definitions and
thematics of absolute and point to point (relative) accuracy. It is
uhderstood that these are the official statistics for stating product
accuracies and for specifying hardware,software requirements when these

becifications are stated in terms of ground position accuracies. The
emphasis of this report is on the development of the theory which defines
accuracy. The application of that theory to any given product is not

Absolute accuracy is defined as the statistics which gives the
ertainty of a point with respect to the datum required by a product
recification. This definition implies that the effects of all error sources,
poth random and systematic, must be considered. Absolute accuracy is stated
terms of two components, a horizontal component and a vertical component.
he horizontal absolute accuracy associated with a product is stated as a
circular error, CE, such that 90 percent of all positions depicted by that
sroduct have a horizontal error with magnitude less than CE. Likewise the
absolute vertical accuracy associated with a product is stated as a linear
error, LE, such that 90 percent of all elevations depicted by the product have
n error with magnitude less than LE. ‘

Relative accuracy is that statistic which gives the uncertainty between
the positions of two points after the effects of all errors common to both
Hoints have been removed. Relative accuracy is also called point to point
accuracy. Relative accuracy is seen to be independent of product datum in
dhat it is defined as the error in the components of the vector between the
two points; but is still stated in terms of a horizontal component ard a
ertical component. As in the case with absolute accuracy, the horizontal
ertainty is stated as a CE and the vertical error is stated as a LE.

Point positions derived from measurements of photographic images are
sually referenced to an earth fixed Cartesian coordinate system. A
ariance-covariance matrix defining the uncertainty of this computed position
relative to this coordinate system is determined by standard error propagation
techniques utilizing a apriori estimates of errors associated with the
computational parameters. The a apriori estimates of the errors associated
ith these computational parameters are usually in the form of a
ariance-covariance matrix and includes all of the covariances resulting from
e correlation of the parameters. The parameter variance-covariance matrices
sed to assess product accuracies result from; (1) statistics accumulated from

redundant observations of the parameters or (2) statistics propagated through
computations required to determine the parameters from redundant”indirect

dbservations. An example of such computations is those required to accomplish
east squares triangulation to update exposure station positions and camera
attitudes.

A primary goal of any evaluation scheme should be the construction of the
ariance-covariance matrix associated with any position depicted in the
product. The generation of such matrices will likely utilize standard error
ropagation techniques and,or sample statistics res ting from the comparison




of positions extracted from the product to their known positions. Such points
referred to as diagnostic points. Ultimately the success of any
uation method depends on its ability to approximate these

The - variance-covariance matrix relating the errors of two geographic
positions will be defined. This is followed by a summary of methods used in
determination of this matrix in various circumstances. Finally the
utation of the absolute CE and LE and the relative point to point CE and

is presented.

To define a covariance matrix consider two vectors, denoted by U and V
se components are random variables. The cross-covariance of the two
ors is defined by ’ : ,

Alu-ed)lv-el] C

where E is the expectation of the random variabie and is defined as the sum of
values the random variable may take, each weighted by the probability of
its occurrence. The covariance of U is whenU = V. ,

Suppose that the geographic position of two points, and their
cross-~covariance matrix has been determined. Let the two positions be denoted
by (Cb|9)\|, hy) and (qbz ,}\2 shp) . Let their cross-covariance matrix be
denoted by O _such that
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O'C;;.Ais the covariance of ¢i and N etc.
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Methods for the determination of the cross-covariance matrix (@ will be
considered. These methods ,intended as guidelines only, are somewhat
generalized in the sense that they are not presented in terms of any one
product. Two methods are presented; the first based on the statistics output
from triangulation; the second based on a comparison of positions sampled from
the product to known or diagnostic positions.

11, Error Propagation Relating to Triangulation

First consider the case involving triangulation. It is not within the
scope of this report to present an exhaustive development of triangulation
mathematics. Hopefully enough for clarity and understanding is presented.

The condition equations are assumed to be of the form

AlL+ V) + Ba =D (m1)
where A and B are coefficient matrices, '
D is a vector of constants,
L is a vector of observations,
V is a vector of residuals and
A is a vector of parameters usually referred to as the state vector.

In addition define(lLJ_ as the covariance matrix associated with the
observational vector L and define W as the observational weight matrix,
that is, -

W = Q. | (m.2)

A few words relative to the observations and state vector regarding their
respective weights are in order. Assume that the unknown state vector, ,
has an initial value that results from an observational reduction process and
thus can be treated as part of the observations, L . Thus any theoretical
error propagation scheme used to estimate triangulation output accuracies
depend heavily on a priori covariances associated with the observations or
associated with parameters treated as observations. The covariance matrices
resulting from triangulation are considered acceptable if a reference variance
computed from the residuals is believable. Define this reference variance as

3




o2 = VWV (D3]

where R is the degrees of freedom associated with the least squares
adjustment. Since the weight matrix is the inverse of the observational
covariance matrix, the reference variance is in variance units and will be
near unity in value. In factg & is sometimes referred to as the the unit
variance. If the unit variance” is not close to unity it becomes difficult to
give much credibility to the subsequent error propagation.

| Rearrange the condition equations so that the form is -
AV + BA=F . (o4
F=D-AL. (ILe5)

The least squares solution is defined as that solution which minimizes the
function :

d = VWV - 2K'(AV + BA-F) (m.s)

with respect to V and A . The vector K is the Lagrange multipliers which
accomplishes this minimization. Therefore to minimize

0&/AV = 0 and O08/dA = 0 (w7

must be satisfied. Thus

08/3V = 2VW -2K'A=0 (T.8)
and

d&/dA = —2KB =0 (Do)
+long with the condition equations forms the system of equations
WV - A'K=0, (TLl0)
}A\/+ PA = F and (Tol1)
BK=0 | (el2)

which must be solved for V , K and A . It can be shown that the solution is
given by
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V= O A K, (Lo13)

(A&,_L )(F BA) and (Ie14)
-

o = [Blaa A 8] Blac AT F. (Ta15)
Let . ' |
| N = BT(AO\LLAT)-I B - (e18)
and ' .

-

T =Bla0 AT) F. E (L 17)
The normal equations can be written as

NA =T | . | (mo18)
so that .l -

A=NT. | (Te19)

The covariance matrix associated with the parameter A is determined by
uging the covariance propagatlon rule

Oaa= daL O\I_L‘JAL ,- (I.20)
where
J =00/ 0L. - L2
Since _ N '
= N'B8' (a0 A) (D - AL) (T.22)
it follows that -0
e N'BTACA) (-A) (m.23
- _T
0., .= -N'BlAC AT ACL [N Bla0w A) Al
(Te24)




which simplifies to

O ,=N. me25)

It is often true that not all of the parameters in the state vector, A

, are used for the development of a product. For example the state vector may
include both ground positions and sensor related parameters. Some products
may be developed using only the ground positions, while others may also
utilize the sensor parameters. To understand this situation suppose that the

state vector can be written as
[

and the corresponding condition equations become
AV +BA+BA=F | (Le27)

which can be written as _
AV +[3 B] H =F C . fmaes)

As |before the normal equations,with

B=[B B | . | (me29)

have the form
() n ® o0 . e !
51 (a0, AN [B B] [4|= |3 (A0 ATF.

(.30}
To| simplify the notation let

W, = (A0 A) (T.31)

—
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Nz Bw.B,
N=BWw52,
T = BTWGF and
T= B.TWQF) |

then the normal equations are

9y
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variance matrices. The normal equation can be written as

(Te33)
Te34)
(Le35)
(Le36)
(Te37)

——

Te38)

:%xt solve for A and A and determine Oz pand O.XX, their respective
ar

s

which

which

NA + NX =T
NA+ N2 =T,

Equation (II.39) yields

A= N(T -NZ)
when substituted into equation (1I.40) yields
NTN(T - N2+ RZ = 7

reduces to

R =(N- NNRIE - N8I - AL,

The covariance propagation rule states that

s e oe T
Cus = [OB/aL] o [ax/aL]

(Te39)

(I «40)

(Tea1)
(Te42)

(ma43)

(Tos4)




where

thus

1] - P _-|
Qix = (N -N'N'N),

Likewise solve for A using equation (II.40), that is,

X o= N(T- N'A) (Toa7)
which when substitute-d :r:to eq.tiati.on (II.3.9) becomes
NA + ANYT-NA) =T (T.ag)

ich r.educes 20 Ceed -l. .  sadeeTi-
1 A=(R-AN'N) (B -RNBWF. (L.l
covariance matrix associated with A is given by o

T

Ozs =[dA/aL]au[04/AL] (m.s0)
A/ = -(N-NR'NTT (B -NNB A (m.si

T Q= (R =N RN w A AT med
LN = NIRRT - R B wg | Heo2

Qxz = (N - RATNTT. (.53

ta

thitp:;titiﬁzs of N" .
Al [
5 W

Assume that A=MT ,that is
ol
Ml T

be shown that these expressions for QA A and QXX correspond

(I .54)




or

M= N (.55)
which means that
NN {[\7\ | M} oo 56
— o _ 0 — . M«5G
NN M M) o
which when expanded gives the four equations |
v+ NV =1, (057
NN+ ‘N.K_A_T: Q, (1458
N+ NM = O and (I.59)
NV o+ R o= 1. : (o
Bquation (II.59) can be rearranged so that |
M —"N ~T. (I[06|)
which when substituted into equation (II.57) gives
YRSV N (r.62)
which, solving for f\./l , gives
® ® —_ AT,
M= (N -NRN N (Te63)
Likewise, equation (II.58), when rearranged, gives
M = -N'"NM (De64)

which when substituted into equation (II.60) and solving for M yields

YER NN

(Te65)



Thus it has been shown that

Qu; =M | (Te66)

AN

Quax - M . , (De67)

A typical method of reducing the dimension of the matrix to be inverted

is to "fold" the normal equations. This is accomplished by eliminating some

of the parameters from the state vector. Assume that the normal equations are

jrtitioned as before, t is .
— . _ -!T el P — — o -

N N A I

NOR AR T 268

which when expanded gives the two equations

SA + NAa=T  (T.69)

and

o0

T. | (m.70)

A + NA

1ding" is accomplished by solving equation (II.70) for A and then .
substituting the resulting expression into equation (II.69) and solving for A
.| The resulting expression is called the folded normal equations, that is,

| NA «RA =T | (L7
ifirplies that

o ol —Te
A = N(T -NA) (T.72)
which upon substitution into equation (II.69) yields

NA + NN-I(T - NTA) =T (Me73)




which reduces to

_..o—|_T s g PR

(N—NN N)A=T - N T (M.74)

and since

° — eal_ ° .
N - RN R =M (w75)

the folded normal equations are

o le |
MA=T -NNT. | (7e)

Tt will now be shown that the covariance matrix, O, M,is given by the

sTue expression as in the unfolded case, that is, . .

Since . . e ..‘I : .' .
A= M(T - ANT)  (L.78)
substitution for 1 and T gives |

o of 8T — eilse
A=m(B8 - NNE)w, (D -AL) (7o)

Using the covariance propagation rule and the fact that

DA/AL = T8 - NN B W, A (L. 80)

yields
] [ 1 — oo—'oo T
Oy = M(BT— N N T)WeA O LA We
oT _ o:loo T ®
X(B -NK T) M (m.sl)
which reduces to

O\.AA = N/] | (]I.82)




which is also the result in the unfolded case.

With the parameters A now known, along with O\AA].t is possible to
determine A andOzx. Consider

os l 00 —Te
= NI(T - NTA) (Ir.ss)
substltutlon for T yields |
R [B"W.(D - AL) - N'A] (r.84)

th A\ is a function of both the parameters A and the observations L and
covariance propagation rule is

. =[B/aL An/aA] [oﬂ 0 } ﬁaz/ad
o} DR/AA)
(Te85)
AR/OL = —N:IB.TWQA -~ (m.ss)
N/ A = N (r.87)
QAA-[—N"'WQA NN ] {QU_ 0 \
O  Qusa
T 0 oo
N Lg\f\.’jBN } (m.88)
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which reduces to

ol et 7

Osx = N + N N'MN

with the substitution

It will now be shown that
to that obtained in the unfolded case, namely M .

QAA — I\'Ao

Eation (II.89) can be used to compute(Qx X when the normal equations have
n folded. 1s expression for QAA is equivalent

and
v+ Nf =0
it follows that
[\./l N so—| — N—lN X
thus |
Qs = N+ N'RTRTNM
Since
M= (N — N'RTRY
it follows that
NN = R-
thus
O\'KK — 'O\OI_I + o0 |( (14 . M_l) L X ]

(Le89)

(Ires0)

(meo1)

(De92)

(., 93)

(Le94)

(Te95)

(z.96)

(1. 97)




which reduces to
0

(:LZiZS = M - (IIQSBEQ

as| in the unfolded case.

IIT. Application of Triangulation Output

For the purpose of applying this information to product evaluation it is
assumed that the vector XA has as its components ground location coordinates
which are to be used as diagnostic control points by the production
organization. The covariance matrices for A and A are given byQAAand QAZ}.
regpectively. ’

It should be noted that the organization generating some specific product
may not use sensor parameters, that is, the organization will not be supplied
with the vector A . Those organizations that require sensor parameters have
two possible sources, either the output of triangulation in the form of

a posteriori parameters or the output of some observational process in the
form of a priori parameters. In either instance the same notation is used

herein.

The possible sources of the ground positions used by the production
organizations are; : ,
- the output from triangulation, although it is unlikely that the
dipgnostic control points are part of the triangulation process,

r - the output from a derivation utilizing either the a priori or
a Posteriori sensor parameters, '

w - the output of some observational process such as surveying.

First consider the case where only A and QAAare used by the production
orbanization. This means that the organization has either the capability of
measuring conjugate image ccordinates from a stereo pair and then computing
the ground coordinates or the capability of establishing the stereo model on
sote real time instrument and observing the model coordinates directly.
et G denote the ground positions output from this process, that is

G = F(A, E) (OTet)

where L is the vector of either image or model observations. The
function F is usually the projective relationship between the image
coordinates and the model coordinates and/or some set of coordinate
transformations of the observed position to the desired product reference

system. The covariance matrix associated with G , denoted bY(QGGS' is given
by

0. = [0F/04 dv/aC][a, o [l@F/aal],
o a;|llerer)
(M.2)




where(QJj [ denotes the covariance matrix associated with L and must be
determined during the observational process as an integral part of that
process.

The vector G may consist of the coordinates of many ground positions,
% without loss of generality assume that G is comprised of any two ground

itions, each with three components, thusO.GG is the 6 x 6 covariance
rix required to compute the relative circular and linear uncertainties,
‘that is, if G is the product being evaluated, then

O\- - O\GGO (IU..3)

It is possible that ground coordinates derived from triangulated
ameters may be provided to the production organization for use in the
geheration of a product or for their use as diagnostic control points for the
se of product evaluation. If the ground points are used in the
geheration of a product, then the relationship of those ground positions, the
state vector and subsequent observations, denoted by | ,required for. product
generation can be written functionally as

{ / / T — 0

‘ G — F(A,L’G OFA). (]I[o4)
|

| The function Flmay consist of the function F as previously defined and

S additional function describing a process involving the adjustment of
obBervations to the vector G . The covariance matrix associated with G is

O = [OF OF o0 0 [0F78A)]
oA AC oG | |0. 00 ||loFrar)|.
0 0O O [lOF/06)

L -

(m.s)

/
Again&d / can be computed for any two points and assuming that G is
the product cutput gives

O\' = ClG,/G/ (UI.G)




This concludes the discussion of error propagation with covariance

matrices as a technique for product evaluation. Evaluation schemes based on
this techniques require accurate knowledge of the a priori covariances

as
wi

IV

ociated with the state vector as well as accurate covariances associated
h all observational processes involved with the generation of the product,

Error Propagation from Sample Statistics

st
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tr
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pogition extracted from the product be

This section considers the task of product evaluation using sample
tistics associated with residuals arising from comparisons of the product
diagnostic control points.

The following analysis is not dependent on the coordinate system
inition, however eventually the resulting covariance matrix must be
nsformed to geographics or some local system with horizontal and vertical
ponents. :

Let the true, but unknown, coordinates of theJTh ‘diagnostic point be
oted byF> : let the coordinates of the same point as extracted from the
duct be dénoted by P and let the coordinates of the point as used for
gnostic control be dénoted by’ﬁa,J .

The error sources contributing to the product evaluation process which
11 be considered during the following analysis are;

- biases in the product,

-~ random errors in the product,

- random errors in the diagnostic control positions and

- random errors in the measurements of the diagnostic positions in the
dduct.,.

Let a residual vector, denoted by V; , associated with the\jfhdxagnostzc
défxned such that

i ARSI (IZ.1)

thEt is, the true position is equal to the product plus the residual vector.

Likewise define a residual vector, dencoted by\Eij, associated with the
diagnostic control position such that ’

= .+ .
These two residual vectors are related by tEZ.Z)

P- Ry TV, Vi (2.3)




th

the difference in coordinates of the points extracted from the product
the corresponding diagnostic control position is equal to the difference

in their residual vectors. This fact is the key to product evaluation using

=1

pr

CO!
CO!

le statistics.

Define

5J' = \/d,J - \/J . . (Ive4)

AsIdume that the diagnostic control positions are unbiased with respect to the

uct datum, that is

E[\/d,ﬂ - O. f (.5

This assumption is usually necessary because any bias in the diagnostic
trol positions are unknown and/or unmeasurable. Frequently the diagnostic
trol positions are generated with source from a population which has an

unbiased error distribution. The covariance matrix associated with the source

is

usually applicable to the entire population or at least that part of the

population with the same characteristics as the source used for the diagnostic
derivation. This means that any biases in the diagnostic positions should be
interpreted as an error from an unbiased population. Thus the associated
covariance matrix is representative of all diagnostic points more so than

those developed for the evaluation of a single product area.

Consider two points, point | and | , and let(Q|c| denote the

covariance matrix associated with the didgnostic control position such that it

is

or

partitioned as

Ocayiny  Qayjyi

p——

) E[Vayi V) E[VayiVa, )]
Ovaq = (IZ.7)
_E[vdyj ch, i.] E‘:\/dﬂ\/c-iruT

|7
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Thus Q.|| is a 6 x 6 covariance matrix withQd,kks k = i or j, being the 3 x

¥

covariance matrix associated with the KM diagndstic control position. In
tual practice the totalQd,d matrix is seldom available. At best only the
onal partitions are supplied. A more likely event is that a set of
riances or standard deviations are provided that apply equally to all the

ints.

The mean residual vector, V , of the diagnostic positions extracted
om the product is defined as

YZ = E[\/J] . | | (7 .8)

I£V=0 , then the product is unbiased.’ However this is not always
case and is not asTRWd It is assumed that the residual vector
J

measured diagnostic position can be represented as the
of the mean residual vector and an kunbiased- randomly distributed residual

tor, denoted byVR, J , that is

\/J = \/RyJ + v - | ' o)

systematic errors, other than biases, are detected in the product, then Vv
ould be replaced by the function defining that error, although it would be
re appropriate to remove the effects of that systematic error from the
oduct. Since '

&= Va,; — VY | (I, 10)

J

bstitution for \{J gives

é\J — \/d’J- - \/R’J' —_v. | (BZ.”)

'The mean value of allé:j , denoted by é\ , is

5 = Elg] (.12)

Kd since the residualsV, : and

are assumed to be samples from an
biased population N

RsJ

5 — —\/o . (mo|3)




1 The error source yet to be considered is that which occurs in the

measurement of the diagnostic positions depicted by the_ﬁgoduct. Let the

residual vector associated with the measurement of the\J

point be denoted

byVy, ;and defined such that

My J

\/R,J: Ve T VM,J ’ (Ia14)

N

whereVp | is that part of the'ranqom residual vector arising from the errors

in the product. Both V),
normally distributed popt
considered,

f and Vp % are assumed to be samples from an unbiased
7a ’_h

tion. erefore when all error sources are

The covariance matrix associated with the random error of the two

where

points 1| and J as depicted in the prpduct is defined as
r _ -
B QP,i,i QP',i,J'
(:L — : 9 (ISZ. HS)
PP | (}:F Q .
T Peteg TPegag |
_ T | | _
;Define
8. |
CS\ = ~ . (NCI?}
©J

The icovariance matrix of & , denoted by QSS o is

Qss = E[(5 — SIS — S)T] ’ (IZe18)

which simplifies to

Qs = E[(SST] — \—/\—/T . (. 18a)

| IS




Substitution of the definition of d; and simplification, assuming the
medsurement errors are independent of all other errors, yields

Qgs = Qdd + Qpp  Quu = Qap ~Qpq  (19)

where

Qap E[\/d,J' VPT,J'] . | (7. 20}

and

(

Cl E: \/ : \/ ' . Y, 2|)
MM [ M’J M’J . - °
The desired matrix (. giving the statistics associated with the product is

Q = Qe + BIV), (a22)

where B(V)is a matrix that is a function of the bias. The last section of
this report will describe a methodology of -computing CE and LE.when affected
byl a bias. For the remainder of this section the bias term will not be
considered, only the random errors are propagated. Therefore :

Q= Q&S‘- Qaa ~ Qum T Qap T QZJP e (Ie23)

This is a generalized form of the relationship between the covariance
matrix associated with the product and those associated with the error sources
in| that the assumption was that of independence of the errors incurred with

t measurement of the diagnostic points in the product. This equation is
useful since it can be simplified according to the statistical relationship
between the diagnostic control errors and the product errors.

IVa. Sample Statistics When the Diagnostic and Product Errors are Independent.

The first example to be considered is that where the error sources
asEociated with the diagnostic control uncertainty and those associated with
the product uncertainty are totally independent, that is,

Qg = O (T  24)

rd

thus

Q = Qg5 = Qaa ~ Quu - (Ze25)

20




This situation frequently occurs in product source and evaluation where the
diagnostic control results from a ground survey.

IVb, Sample Statistics When Diagnostic and Product Errors are Dependent.

The other situation to be considered is when the diagnostic control is

developed from the same source as the product. In this instance the matrix

Qap~ Qua, | (. 26)

the only difference being the error associated with the measurement procedures
for control development and those associated with product generation. Let the
covariance matrix Q¢| be redefined as the sum of the covariance matrix
associated with the measurements required for control development, denoted

Since

by(QAA” , and the covariance matrix associated with all other error sources
reJLatetg/1 t

o control development, denoted by Clcﬁj' , that is,

Qgqaq = Qg | | (I7.27)

Qup = Quy (. 28)

approximately, then

Q — Q.(S‘(S - Qdé-j/ - QM/M/ ——O‘MM +QO/O/ +(Qdéll
IV.29)

which simplifies to ‘ |

Q = Q5§ + Qd'd’ —QM’M' — QMM . (]SZ'.30)

This appears to be a larger uncertainty than in the previous example in the

a

sense thatCkia’ is added instead of subtracted, However, consider that

Qss = Quu T Quy + Qe \(.31)

extraction and subsequent processing required for product output. This means

t
e

:groximately, where Qcc 1s the covariance matrix associated with data

t all error sources in the diagnostic control and the product are the same
x¢cept for the measurement errors, then

Q= O»d/d' +. QCC (IY.32)

21




approximately, thus the uncertainty is not necessarily larger than in the
pravious example. This second example is the usual situation existing in the
generation and evaluation of a product.

IVe, Summary of Sample Statistics Methodology.

To summarize, the following steps are required to compute the covariance
matrix @ using sample statistics resulting from the comparison of the
product to diagnostic control positions.

1. The production organization is supplied with diagnostic control
positions which must be distributed such that a reasonable number of pairs for
the| point to point accuracy computations are available. The point to point
relative accuracy is that accuracy associated with the horizontal and vertical
components of a vector from one product point to another product point. Since
the| point to point accuracies are likely to be a function of the vector length
the| vectors can be classified according to length and an accuracy computed for
each class. The accuracy assigned to the product is that associated with the
clags of vectors of length specified for the product. For the purposes of

this report consider only a single class of. vectors, Let the subscript |
denpte either the initial or terminal point of the'Tr\ve tor, that is, thi .
denotes the position of one of the points defining the | vector. The J
production organization should also be supplied with the covariance

mat icesClAA$A/, Qdcl and/or Q.¢|¢l’ » It is possible that each diagnostic
control position has a different covariance matrix supplied, but this is not
the usual case. Usually. a covariance matrix or standard deviations are

supplied that apply equally to any point.

i
E 2. The production organization identifies the diagnostic locations in

the|product and measures their positions. These measurements are used to
°°m+uted the geographics of the points, denoted by Pj, j o

3, The 6 x 6 cross-covariance matrix(ld;d; is computed by

cls07] Elool]

(:Léi§~ - - \/ i7
El6.80]  E[6,57]

where

T

E[.&ié\;r] = m_l—_l (P - Pd,i,J><Pi,J - Pd,i,J)7 (ISZ'.34)

I9J

. T
E[c?ié\u = m_lﬂjz:l(Pi,J' ~ Pd,i,J)(Pk,J' - Pd,k,J') (.35)

i
i
and| M is the number of pairs selected for the evaluation process. Since
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the| point to point accuracies assigned to a given product are for a specified
distance, the diagnostic points must be paired so that they are separated by
approximately that distance.

4. The covariance matrix QMM is determined. This will require
rimentation using redundant observations. It is unlikely that this
:‘cﬁriment needs to be repeated everytime a product area is evaluated.

5. The covariance matrix Q. is computed using the appropriate equation,
Q = Qé\é\ = Qgq — Quu (T «36)

if the diagnostic control positions are derived from a source other than that
used for the product generation, or _

Q= Qgs 7 Qar ~ Quy ~ Quu  (.37)
if the diagnostic cont_rol and theiproduct are developed from the same source.

V Absolute Accuracy -Computations

The methodology for computing absolute and relative accuracy from the
covariance matrix Q is now presented, where Q is partitioned such that

rO‘I.I Ql2 |
Q - T . : (Vol)
_C“lz sz__

Depending on the distribution and pairing of the diagnostic points, the
covariance matrix Q can be associated with the absolute accuracy of a
point located in a spec1f1c area of the total product area and the covariance
matrix Q22 can be associated with an area at the distance required to satisfy
the |point to point accuracy specifications.

| Regardless of the method used to determine (X it is likely that the
angular units are radians and the linear units are meters. The proposed
me of computing accuracy assumes that all units are meters.

For the purpose of this conversion a spherical earth, for each local
ared, is assumed with the radius defined by
V2

R = &/(1-<fsiNg] (o2

whege 4d is the semi- major axis and @ is the eccentricity of the
ref%rence ellipsoid. Any distance between two points, denoted by S , along
thig meridian can be approximated by

S = RA¢, (v.3)




W

denote the standard deviation of the latitude and longitude,
tively, in units of meters, thus

where Aqﬁ is the angular separation in latitude of the two points. Let @’Cb
é
r

5¢ = R T | (V.4)

&)\ = RCOS({)-U"/\ | | (7.5

re (Td; and O )\ are the standard deviations of the latitude and longitude,

respectively, in radians as extracted fromO.“ or Q22 . The elements of

C

covariance matrix Q. are modified such that.the correlation between the

fficient between and >\ , thus

variables is maintained. 'For example, let p Cb \ ‘denote the correlation

qux: a¢>>/a¢o->\_ — %/\/%‘A’)\ | (v.6)

which is simplified to

Py

32}5)\ = 'RZCOSQS-JCZ)}\.- | (¥.7)

oceeding in this manner the units of all elements of Q can be converted to
ters squared without changing the statistical content of the matrix.

l{zt @, 'denoted the modified covariance matrix such that

M A A

A QH le '

Q= " . . (C.e)
Gz Qe

absolute CE and LE can be computed usingl either Q” or 0.22 . 1If the

product area being evaluated is of uniform accuracy the results should be

e

ntially the same regardless of the choice. It is suggested that the
solute CE and LE be computed twice, once using and once using Q22 .
e maximum CE and LE should be selected for the pl.lbduct evaluation.

Consider either the covariance matrix Q.|| or Q02 . Assume that the
rizontal and vertical components of the uncertainty are independent. This

agsumption means that the covariances between the horizontal components and

vertical component are zero andQ“ is given by
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ar

ve
de

.

C

O‘d) O'qs A O
i = |gn o O | . (T

o "0

subscripts on the matrix elements have been dropped since there is not a

to distinguish between the two partitions. If the covariances indicated
e not near zero the axis of the error ellipsoid does not point in the
rtical direction. Not much can be done about this condition unless the
finitions of accuracies associated with the products are to be modified.

Fortunatally these covariances are usually near zero.

The absolute LE is given by
LE = 1.6449|/2

The procedure for determining the absolute CE is more complicated. To
ure that the axes of the horizontal error ellipsoid are used in the
utations it is necessary to find the eigenvalues of the horizontal
tition of the covariance matrix. These eigenvalues are the magnitude of
axes of the horizontal error ellipsoid, thus

. | (Y.10)

O'd§ —ILL U'q)x ;
, = 0 (on)
N o\ ~H

gives the eigenvalues (L , which are
2 2 2 2\2 2
L :é—(O‘Cb + G‘)i é_/\/(o‘qs — (7‘)\) +4(O‘¢>\) .
Note that if the two components are independent, then UdD/\:O and (Yo |2)
| 2 2 2 2
w="laf + o) E Jz'(aqb - o{) (Te13)
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or

W= q52 or 0‘/2 | (74 14)

as pxpected.

gi

is

ven by the eigenvalues, that is

Iet U and V denote the two independent variableé whose uncertainty is

c7'2 = ( qb +\/ cr(b N +(0‘¢‘>\.)2 (Vo15)

(aqb+o)—\/z'(042,—0>\)2+(0¢,\)2- z.i6)

The absolute CE is computed. utilizing UU and . YA The usual method
to let . '

CE = 2.146(q, + o, )/2 - (zar)

however this approxunatlon is valld only if O.5< g/ o, < L0 -

Lety

C= JV/UQ | | | . (Zo18)

where

oyS gy e (Zo19)

Th:ograph illustrates the percent error for CE as a function of C when the
ab:

lute error is computed usmg the above approxnnatlon.
" X_ERFOR ' -
i 48
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The error is such that the approximation gives results that are overly
optimistic. The following method is suggested as a way to avoid this error.

Suppose that

CE = Koye - | (z.20)

The following graph shows the correct value of K as a function of C .

{.b i 1 s

This graph was constructed from data available in the CRC Handbook for
Probability and Statistics, Second Edition, and is xéalid on]g if U and Vv
are independent variables, which is insured since UU and av are the
efigenvalues of the covariance matrix. '

A second order polynomial was fit to the values shown in the graph to
obtain :

K = 1.6545 — 0.13913C + 0.6324C° (w.21)

a. = 0.005 (Ve22)

thus
CE =(1.6545 —0.13913C +0.6324C) o,

VI. Point to Point Relative Accuracy Computations

(Ve23)

Since the elements of the covariance matrix (1 are in units of meters
squared it is legitimate to use the components of the vector defined by the
two points for the purpose of point to point accuracy computations. Let these
components be denoted by
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A¢:§b2— ¢| Y (YI.I)

AN= Xp — \ (VLe2)
and '

Ah = hy = by (vT.3)
with A AN e AR s covariane. e e uaed o compute the

relative point to point CE and LE. Let this covar
by QPP , thus

Qep = JOJ

where

thq:s

J

Itf is assumed that the horizontal and vertical d-ifferences are independent,

NP QAP DN ONE QAP DAP
5d>| a)\l ah| ad)Z ic")kz ahg
AAN AN OAN OAN QAN AN
Ab AN  Oh Oz O Ohs

iance matrix be denoted

thys the covariance matrix Qp p is of the form

28
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(VT.4)

(w1.5)

OAn OAh  OAn QAR JAh  JAn
Jd SN oOm 0% dXe Ohy -

1 00 I 0 0]

O-I 0O O | 0O]. (V1.6)
0O 0 -1 O 0O |

- o _
ad apaN O
— 2
‘ 2
LC O ah |




Let

[ A 7]
Q.. ©
Qp;. — > . (ﬂ. 8)
_O Iah |
that is ~ , | : _
N INOV PN

. (W.9)

2
_Uz_\.cbak | TaX

If UA_ AN=Or thenA ¢ and A>~ are indeperxient.variables, but

if GA?M#_-Qit is necessary to determine the semi-major and semi-minor axes of
the“ekror ellipse defined byd . The length of these axes are the standard
deliations of the ‘two independént varigbles, say U and V . The variances
for U and V are the eigenvalues of FE ¢ thus

_ | 2\ 2 2
2 = g+ o) +m/z';(f£¢ — a0

2 >
+(UA¢A>\) (I[.IO)

2 = Ly + B) — Ly - Al Hagarls

VL .ll)

The remaining steps for computing relative CE and LE from O, amd U,, are
identical to those described for computing absolute accuracy.

VII Alternate Error Propagation from Sample Statistics

An alternate method of obtaining the product accuracies from sample
stlatistics will now be described. This method requires fewer computations,
but is recommended for use only when the diagnostic control uncertainty and
the measurement uncertainty associated with the extraction of the diagnostic
pdints from the product is small when compared to the uncertainty associated
wiith the product.

Suppose that the diagnostic control positions are in terms of

geographics, that is the points (7€J,>\J-, hy Jrd=1 2 «.. are
provided to the production organization. Let the corresponding positions as
Eured in the product be denoted by (#; y A; , R, ). The difference of the
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pProduct and diagnostic control for the JTh point is

Db —% - Cﬁjﬂ
AN =K - Ny (1. 1)

__AhJ_ Ly = hy ]

ot

If the assumptions of negligible diagnostic. control uncertainty and

asurement uncertainty are valid these differences represent the errors

" in the product at that point.

ag

g

If the units associated with these differences are not in meters they
uld be converted as previously detailed.

Let AR j denote the horizontal error associated with the JTh diagnostic
vint, that is '

AR =AE + aX . (e

:jese horizontal errors are used to construct an ogive. An ogive is defined

a graph showing the cumulative frequency less than AR plotted
jainst AR . The following graph illustrates the concept of an ogive.

180 | ——
96 e

&a | -

N »5 & of
RES(DELTR FYRAX CELTR R

In practice the basic idea of the method is to delete the points with the
argest differences until 10 percent of the samples have been eliminated. The
argest remaining residual is taken to be the absolute CE.
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The absolute LE is determined in a like manner using

AhJ' — ﬁJ - hJ (\ZII.3)

discarding the largest differences until 10 percent of the differences are

eliminated. The largest remaining difference is the absolute LE. Any
stematic error in the product will contribute to the accuracy when

determined from an ogive, but an assessment of the magnitude is not obtained. -

The relative point to point accurécy can also be determined by use of the
ive. Consider the vector, denoted by dJ' . between the two diagnostic
cantrol positions. Let

-
quJ N
th' '

L J

&
|

denote the components of this vector. The points should be separated by
approximately the distance required by the product specification for point to
poiint accuracy computations. Let d denote the vector between the same two
points as depicted in the product, t is

-

[ A
de; ,

N />\\

G [dAj e (V1.5)
th'J

Define for each diagnostic pair,

A
dpj - deyT

; _ A — /\. .

,_X(]J p— dJ - dJ - d/\J - dKJ (SZ]l.G)
_th' - th i
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and dssume that all units are meters. Let

/

— 2 2
Ar =ndd) — dpl® A (dR) — ar)) (z.7)
and form the ogive to obtain the relative CE.
Likewise form the ogive using
_ N , , '
Ahy = |dhj = dhj ’ . (VII.8)

and dptermine the relative LE,

VIII,| Accuracy Influenced by Bias.

The affects of bias on the evaluation process is now considered. This
sectipn details the methodology for the incorporation of the bias into the
accurgcy computations., While the development presented is in terms of
absolute accuracies, the same relationships are applicable to relative
accuracy computations, ' '

assumption that the product, not the diagnostic control, is biased, It is
further assumed that the sample statistics arising from the evaluation process
described in section IV are captured in the form of. the covariance matrix Q
(equation 1IV,23) and the bias vector V (equation IV.8).

umEhe assumptions of section IV are still valid, in particular the
th

First consider the bias applied to the CE computations.‘ The- methodology
described is based on a study report entitled CIRCULAR ERROR PROBABILITY OF A
QUANTITY AFFECTED BY A BIAS, by Melvin E. Shultz, DMAAC,

Define the componenE§ of the bias vector V as
: r§7qb

V= (W, | (. )
: Y,

then #he horizontal bias, denoted by bf\ yis given by
i

72 =2
b —A/\/qs + VX (vim. 2)
whereit41 is always positive and is considered to be in units of meters,

he values of 02 and Ug as defined by equations V.15 and V.16 are
extracted from the covariance matrix Q. The resulting values of ch andcr,v

are used to compute CE,

|
|
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This ¢
report
additi
is giv

he equations developed by Shultz require a .39 P circular error as

thus define 0& such that

g. = 044660 CE. VI e3)

glthOUt loss of generality assume that the bias is along the x axis of an

ary coordinate system. Also assume that the density function, which is
ssociated with a circular normal distribution, is centered at (k)h,O)
he definition of probability if follows that

P[X2+'Y2< CEZ] :f 21TI<7C2 ?Xp%%z—[(x—bh)2+ gzj%dxdg
| (VITLe4)

terms of polar coordinates CE:2TT

2 -2rb
[r < CE ]_exp 202 27T0‘2 | exp r 2rthcose] rdBdre.

(VI.5)

quation must be evaluated such thatP[r<CE Ois satisfied, The study
by Shultz provides an algorithm for evaluatlng the probability. 1In

on a table of circular probabilities as a function of by /0 and CE/C¢

en in the CRC HANDBOOK OF TABLES FOR PROBABILITY AND S TISTICS 2nhd

editign. These tabulated values can be used to verify the equation given by

Shultz

Thus t

height

]

CE — 21272 +O.I674(b ) +o.3623( )2 - o;o5so<§-cfl)3.

%
(VIILeG)

he CE, with bias , is given by
& 2
CE = 241272 +0.I674 by, + 043623 21 — 0.055032

(Vi47)

The LE,when influenced by a bias, is computed in a similar manner.
The value of JhH » the standard deviation (.69 P) associated with the

, 1s extracted from the covariance matrix Q. Let b\,denote the vertical

bias such that

It can

by = Vpe (VT.8)
be shown that
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where K is a function of the magnitude of the bias and standard deviation.
The value of K is defined by the following table which is extracted from
normai distribution tables.

levl /& K

"TTTT'*‘ 1.6449
1.5527
1.4772
1.4176
1.3716
1.3389
1.3158
1.3016
1.2924
1.2875
1.2844
1.2829
1.2824
1.2821
1,2815

O000O0o
* e L] L] . . L] L]
NONUEEWN

HHHMHEEOOODO
. L]
FUNHFOWV®

when [By < 1.4, K = 1.2815, ‘
The values oflz could be computed from the equation

i ) "
P[x<LE]TJ§?thfexp§5;E(x-ﬁbvw‘}dx o (v, 7)
-(k+2b, |
solving for K so that Pix< LE] =.9.

A cubic polynomial fit through the tabular values yields

V= 3

K=1e6435-0e999556 “3-—:" + O.923237('7b}:—l) —Qe2 82533(|5_v|).
‘ h

This value of K should be used when lbv I/Uh\< .4, (Y[[[.S)
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